summaryrefslogtreecommitdiff
path: root/prb_math.h
blob: 8f188f4eed6ba7e7689e6c4d63882ab99e73e17c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#define V2_ZERO		(v2){ 0.0f,  0.0f}
#define V2_ONE		(v2){ 1.0f,  1.0f}
#define V2_RIGHT	(v2){ 1.0f,  0.0f}
#define V2_UP		(v2){ 0.0f,  1.0f}
#define V2_LEFT		(v2){-1.0f,  0.0f}
#define V2_DOWN		(v2){ 0.0f,   -1.0f    }

#define V3_ZERO		(v3){ 0.0f,  0.0f,  0.0f}
#define V3_ONE		(v3){ 1.0f,  1.0f,  1.0f}
#define V3_RIGHT	(v3){ 1.0f,  0.0f,  0.0f}
#define V3_UP		(v3){ 0.0f,  1.0f,  0.0f}
#define V3_LEFT		(v3){-1.0f,  0.0f,  0.0f}
#define V3_DOWN		(v3){ 0.0f, -1.0f,  0.0f}
#define V3_FORWARD	(v3){ 0.0f,  0.0f,  1.0f}
#define V3_BACKWARD	(v3){ 0.0f,  0.0f, -1.0f}

#define V4_ZERO		(v4){0.0f, 0.0f, 0.0f, 0.0f}
#define V4_ONE		(v4){1.0f, 1.0f, 1.0f, 1.0f}

#define MAT4_IDENTITY	(mat4){ \
			{1.0f, 0.0f, 0.0f, 0.0f}, \
			{0.0f, 1.0f, 0.0f, 0.0f}, \
			{0.0f, 0.0f, 1.0f, 0.0f}, \
			{0.0f, 0.0f, 0.0f, 1.0f}}

#define F_PI 3.14159265359f

#define deg2rad(angle)	(F_PI/180.0f*(angle))

#define QUAT_IDENTITY	(v4){0.0f, 0.0f, 0.0f, 1.0f}

/* TODO(pryazha): Implement trigonometry functions */
f32 fsin(f32 a)
{
	f32 result = sinf(a);
	return result;
}

f32 fcos(f32 a)
{
	f32 result = cosf(a);
	return result;
}

f32 ftan(f32 a)
{
	f32 result = tanf(a);
	return result;
}

f32 fsqrt(f32 a)
{
	f32 result = sqrtf(a);
	return result;
}

// vectors
v2 v2_fill(f32 x)
{
	v2 v = {x, x};
	return v;
}

v2 v2_inv(v2 a)
{
	v2 v = {-a.x, -a.y};
	return v;
}

v2 v2_add(v2 a, v2 b)
{
	v2 v = {a.x+b.x, a.y+b.y};
	return v;
}

v2 v2_sub(v2 a, v2 b)
{
	v2 v = {a.x-b.x, a.y-b.y};
	return v;
}

v2 v2_scalef(v2 a, f32 s)
{
	v2 v = {a.x*s, a.y*s};
	return v;
}

v2 v2_scale(v2 a, v2 s)
{
	v2 v = {a.x*s.x, a.y*s.y};
	return v;
}

f32 v2_dot(v2 a, v2 b)
{
	f32 v = a.x*b.x+a.y*b.y;
	return v;
}

f32 v2_len2(v2 a)
{
	f32 v = v2_dot(a, a);
	return v;
}

f32 v2_len(v2 a)
{
	f32 v = fsqrt(v2_len2(a));
	return v;
}

v2 v2_norm(v2 a)
{
	v2 v = {0};
	f32 len = v2_len(a);
	if (len)
		v = (v2){a.x/len, a.y/len};
	return v;
}

v3 v3_fill(f32 x)
{
	v3 v = {x, x, x};
	return v;
}

v3 v3_from_v2(v2 a)
{
	v3 v = {a.x, a.y, 0.0f};
	return v;
}

v3 v3_from_v4(v4 a)
{
	v3 v = {a.x, a.y, a.z};
	return v;
}

v3 v3_inv(v3 a)
{
	v3 v = {-a.x, -a.y, -a.z};
	return v;
}

v3 v3_add(v3 a, v3 b)
{
	v3 v = {a.x+b.x, a.y+b.y, a.z+b.z};
	return v;
}

v3 v3_sub(v3 a, v3 b)
{
	v3 v = {a.x-b.x, a.y-b.y, a.z-b.z};
	return v;
}

v3 v3_scalef(v3 a, f32 s)
{
	v3 v = {a.x*s, a.y*s, a.z*s};
	return v;
}

v3 v3_scale(v3 a, v3 s)
{
	v3 v = {a.x*s.x, a.y*s.y, a.z*s.z};
	return v;
}

f32 v3_dot(v3 a, v3 b)
{
	f32 v = a.x*b.x+a.y*b.y+a.z*b.z;
	return v;
}

v3 v3_cross(v3 l, v3 r)
{
	v3 v = {(l.y*r.z - r.y*l.z), (r.x*l.z - l.x*r.z), (l.x*r.y - r.x*l.y)};
	return v;
}

f32 v3_len2(v3 a)
{
	f32 v = v3_dot(a, a);
	return v;
}

f32 v3_len(v3 a)
{
	f32 v = fsqrt(v3_len2(a));
	return v;
}

v3 v3_norm(v3 a)
{
	v3 v = V3_ZERO;
	f32 len = v3_len(a);
	if (len)
		v = (v3){a.x/len, a.y/len, a.z/len};
	return v;
}

v4 v4_fill(f32 x)
{
	v4 v = {x, x, x, x};
	return v;
}

v4 v4_from_v3(v3 a)
{
	v4 v = {a.x, a.y, a.z, 0.0f};
	return v;
}

v4 v4_inv(v4 a)
{
	v4 v = {-a.x, -a.y, -a.z, -a.w};
	return v;
}

v4 v4_add(v4 a, v4 b)
{
	v4 v = {a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w};
	return v;
}

v4 v4_sub(v4 a, v4 b)
{
	v4 v = {a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w};
	return v;
}

v4 v4_scalef(v4 a, f32 s)
{
	v4 v = {a.x*s, a.y*s, a.z*s, a.w*s};
	return v;
}

v4 v4_scale(v4 a, v4 s)
{
	v4 v = {a.x*s.x, a.y*s.y, a.z*s.z, a.w*s.w};
	return v;
}

f32 v4_dot(v4 a, v4 b)
{
	f32 v = a.x*b.x+a.y*b.y+a.z*b.z+a.w*b.w;
	return v;
}

f32 v4_len2(v4 a)
{
	f32 v = v4_dot(a, a);
	return v;
}

f32 v4_len(v4 a)
{
	f32 v = fsqrt(v4_len2(a));
	return v;
}

v4 v4_norm(v4 a)
{
	v4 v = V4_ZERO;
	f32 len = v4_len(a);
	if (len)
		v = (v4){a.x/len, a.y/len, a.z/len, a.w/len};
	return v;
}

// matrices
f32 mat4_det(mat4 m)
{
	f32 m00 = m.c0.x, m10 = m.c0.y, m20 = m.c0.z, m30 = m.c0.w;
	f32 m01 = m.c1.x, m11 = m.c1.y, m21 = m.c1.z, m31 = m.c1.w;
	f32 m02 = m.c2.x, m12 = m.c2.y, m22 = m.c2.z, m32 = m.c2.w;
	f32 m03 = m.c3.x, m13 = m.c3.y, m23 = m.c3.z, m33 = m.c3.w;

	f32 m00minor = ((m11*m22*m33)+(m12*m23*m31)+(m21*m32*m13)-
			  (m31*m22*m13)-(m21*m12*m33)-(m11*m32*m23));

	f32 m01minor = ((m10*m22*m33)+(m12*m23*m30)+(m20*m32*m13)-
			  (m13*m22*m30)-(m23*m32*m10)-(m12*m20*m33));

	f32 m02minor = ((m10*m21*m33)+(m20*m31*m13)+(m11*m23*m31)-
			  (m13*m21*m30)-(m23*m31*m10)-(m11*m20*m33));

	f32 m03minor = ((m10*m21*m32)+(m20*m31*m12)+(m11*m22*m30)-
			  (m12*m21*m30)-(m11*m20*m32)-(m22*m31*m10));

	f32 result = m00*m00minor+m01*m01minor-m02*m02minor+m03*m03minor;

	return result;
}

mat4 mat4_transp(mat4 m)
{
	swap(f32, m.c0.y, m.c1.x);
	swap(f32, m.c0.z, m.c2.x);
	swap(f32, m.c0.w, m.c3.x);

	swap(f32, m.c1.z, m.c2.y);
	swap(f32, m.c1.w, m.c3.y);

	swap(f32, m.c2.w, m.c3.z);

	return m;
}

mat4 mat4_mul(mat4 left, mat4 right)
{
	f32 l00 = left.c0.x, l01 = left.c0.y, l02 = left.c0.z, l03 = left.c0.w;
	f32 l10 = left.c1.x, l11 = left.c1.y, l12 = left.c1.z, l13 = left.c1.w;
	f32 l20 = left.c2.x, l21 = left.c2.y, l22 = left.c2.z, l23 = left.c2.w;
	f32 l30 = left.c3.x, l31 = left.c3.y, l32 = left.c3.z, l33 = left.c3.w;

	f32 r00 = right.c0.x, r01 = right.c0.y, r02 = right.c0.z, r03 = right.c0.w;
	f32 r10 = right.c1.x, r11 = right.c1.y, r12 = right.c1.z, r13 = right.c1.w;
	f32 r20 = right.c2.x, r21 = right.c2.y, r22 = right.c2.z, r23 = right.c2.w;
	f32 r30 = right.c3.x, r31 = right.c3.y, r32 = right.c3.z, r33 = right.c3.w;

	mat4 result = {
		{
			l00*r00+l10*r01+l20*r02+l30*r03,
			l01*r00+l11*r01+l21*r02+l31*r03,
			l02*r00+l12*r01+l22*r02+l32*r03,
			l03*r00+l13*r01+l23*r02+l33*r03
		},
		{
			l00*r10+l10*r11+l20*r12+l30*r13,
			l01*r10+l11*r11+l21*r12+l31*r13,
			l02*r10+l12*r11+l22*r12+l32*r13,
			l03*r10+l13*r11+l23*r12+l33*r13
		},
		{
			l00*r20+l10*r21+l20*r22+l30*r23,
			l01*r20+l11*r21+l21*r22+l31*r23,
			l02*r20+l12*r21+l22*r22+l32*r23,
			l03*r20+l13*r21+l23*r22+l33*r23
		},
		{
			l00*r30+l10*r31+l20*r32+l30*r33,
			l01*r30+l11*r31+l21*r32+l31*r33,
			l02*r30+l12*r31+l22*r32+l32*r33,
			l03*r30+l13*r31+l23*r32+l33*r33
		}
	};

	return result;
}

mat4 mat4_make_transl(v3 v)
{
	mat4 translate = {
		{1.0f, 0.0f, 0.0f, 0.0f},
		{0.0f, 1.0f, 0.0f, 0.0f},
		{0.0f, 0.0f, 1.0f, 0.0f},
		{v.x,  v.y,  v.z,  1.0f}
	};
	return translate;
}

mat4 mat4_make_scale(v3 v)
{
	mat4 scale = {
		{v.x,  0.0f, 0.0f, 0.0f},
		{0.0f, v.y,  0.0f, 0.0f},
		{0.0f, 0.0f, v.z,  0.0f},
		{0.0f, 0.0f, 0.0f, 1.0f}
	};
	return scale;
}

mat4 mat4_make_rotate(v3 x, v3 y, v3 z)
{
	mat4 rotate = {
		{x.x,  x.y,  x.z,  0.0f},
		{y.x,  y.y,  y.z,  0.0f},
		{z.x,  z.y,  z.z,  0.0f},
		{0.0f, 0.0f, 0.0f, 1.0f}
	};
	return rotate;
}

mat4 mat4_transl(mat4 m, v3 v)
{
	mat4 translate = mat4_make_transl(v);
	mat4 result = mat4_mul(translate, m);
	return result;
}

mat4 mat4_scale(mat4 m, v3 v)
{
	mat4 scale = mat4_make_scale(v);
	mat4 result = mat4_mul(scale, m);
	return result;
}

/*
 * NOTE(pryazha): Angles in degrees
 * | 1   0   0  | |  cy   0   sy | |  cz  -sz   0 | | cy*cz           -cy*sz            sy    |
 * | 0   cx -sx |*|  0    1    0 |*|  sz   cz   0 |=| sx*sy*cz+cx*sz  -sx*sy*sz+cx*cz  -sx*cy |
 * | 0   sx  cx | | -sy   0   cy | |  0    0    1 | | -cx*sy*cz+sx*sz  cx*sy*sz+sx*cz   cx*cy |
 */
mat4 mat4_rotate(mat4 mat, v3 angles)
{
	f32 angle = deg2rad(angles.x);
	f32 cx = fcos(angle);
	f32 sx = fsin(angle);
	angle = deg2rad(angles.y);
	f32 cy = fcos(angle);
	f32 sy = fsin(angle);
	angle = deg2rad(angles.z);
	f32 cz = fcos(angle);
	f32 sz = fsin(angle);

	v3 x = {cy*cz, sx*sy*cz+cx*sz, -cx*sy*cz+sx*sz};
	v3 y = {-cy*sz, -sx*sy*sz+cx*cz, cx*sy*sz+sx*cz};
	v3 z = {sy, -sx*cy, cx*cy};
	mat4 rotate = mat4_make_rotate(x, y, z);

	mat4 result = mat4_mul(rotate, mat);

	return result;
}

v4 mat4_v4_mul(mat4 m, v4 v)
{
	v4 result = {
		m.c0.x*v.x+m.c1.x*v.y+m.c2.x*v.z+m.c3.x*v.w,
		m.c0.y*v.x+m.c1.y*v.y+m.c2.y*v.z+m.c3.y*v.w,
		m.c0.z*v.x+m.c1.z*v.y+m.c2.z*v.z+m.c3.z*v.w,
		m.c0.w*v.x+m.c1.w*v.y+m.c2.w*v.z+m.c3.w*v.w
	};
	return result;
}

i32 in_rect(v2 pos, rect_t rect)
{
	i32 result = (pos.x > rect.start.x) && (pos.x < rect.end.x) &&
		(pos.y > rect.start.y) && (pos.y < rect.end.y);
	return result;
}