#define V2_ZERO (v2){ 0.0f, 0.0f} #define V2_ONE (v2){ 1.0f, 1.0f} #define V2_RIGHT (v2){ 1.0f, 0.0f} #define V2_UP (v2){ 0.0f, 1.0f} #define V2_LEFT (v2){-1.0f, 0.0f} #define V2_DOWN (v2){ 0.0f, -1.0f } #define V3_ZERO (v3){ 0.0f, 0.0f, 0.0f} #define V3_ONE (v3){ 1.0f, 1.0f, 1.0f} #define V3_RIGHT (v3){ 1.0f, 0.0f, 0.0f} #define V3_UP (v3){ 0.0f, 1.0f, 0.0f} #define V3_LEFT (v3){-1.0f, 0.0f, 0.0f} #define V3_DOWN (v3){ 0.0f, -1.0f, 0.0f} #define V3_FORWARD (v3){ 0.0f, 0.0f, 1.0f} #define V3_BACKWARD (v3){ 0.0f, 0.0f, -1.0f} #define V4_ZERO (v4){0.0f, 0.0f, 0.0f, 0.0f} #define V4_ONE (v4){1.0f, 1.0f, 1.0f, 1.0f} #define MAT4_IDENTITY (mat4){ \ {1.0f, 0.0f, 0.0f, 0.0f}, \ {0.0f, 1.0f, 0.0f, 0.0f}, \ {0.0f, 0.0f, 1.0f, 0.0f}, \ {0.0f, 0.0f, 0.0f, 1.0f}} #define F_PI 3.14159265359f #define deg2rad(angle) (F_PI/180.0f*(angle)) #define QUAT_IDENTITY (v4){0.0f, 0.0f, 0.0f, 1.0f} /* TODO(pryazha): Implement trigonometry functions */ f32 fsin(f32 a) { f32 result = sinf(a); return result; } f32 fcos(f32 a) { f32 result = cosf(a); return result; } f32 ftan(f32 a) { f32 result = tanf(a); return result; } f32 fsqrt(f32 a) { f32 result = sqrtf(a); return result; } // vectors v2 v2_fill(f32 x) { v2 v = {x, x}; return v; } v2 v2_inv(v2 a) { v2 v = {-a.x, -a.y}; return v; } v2 v2_add(v2 a, v2 b) { v2 v = {a.x+b.x, a.y+b.y}; return v; } v2 v2_sub(v2 a, v2 b) { v2 v = {a.x-b.x, a.y-b.y}; return v; } v2 v2_scalef(v2 a, f32 s) { v2 v = {a.x*s, a.y*s}; return v; } v2 v2_scale(v2 a, v2 s) { v2 v = {a.x*s.x, a.y*s.y}; return v; } f32 v2_dot(v2 a, v2 b) { f32 v = a.x*b.x+a.y*b.y; return v; } f32 v2_len2(v2 a) { f32 v = v2_dot(a, a); return v; } f32 v2_len(v2 a) { f32 v = fsqrt(v2_len2(a)); return v; } v2 v2_norm(v2 a) { v2 v = {0}; f32 len = v2_len(a); if (len) v = (v2){a.x/len, a.y/len}; return v; } v3 v3_fill(f32 x) { v3 v = {x, x, x}; return v; } v3 v3_from_v2(v2 a) { v3 v = {a.x, a.y, 0.0f}; return v; } v3 v3_from_v4(v4 a) { v3 v = {a.x, a.y, a.z}; return v; } v3 v3_inv(v3 a) { v3 v = {-a.x, -a.y, -a.z}; return v; } v3 v3_add(v3 a, v3 b) { v3 v = {a.x+b.x, a.y+b.y, a.z+b.z}; return v; } v3 v3_sub(v3 a, v3 b) { v3 v = {a.x-b.x, a.y-b.y, a.z-b.z}; return v; } v3 v3_scalef(v3 a, f32 s) { v3 v = {a.x*s, a.y*s, a.z*s}; return v; } v3 v3_scale(v3 a, v3 s) { v3 v = {a.x*s.x, a.y*s.y, a.z*s.z}; return v; } f32 v3_dot(v3 a, v3 b) { f32 v = a.x*b.x+a.y*b.y+a.z*b.z; return v; } v3 v3_cross(v3 l, v3 r) { v3 v = {(l.y*r.z - r.y*l.z), (r.x*l.z - l.x*r.z), (l.x*r.y - r.x*l.y)}; return v; } f32 v3_len2(v3 a) { f32 v = v3_dot(a, a); return v; } f32 v3_len(v3 a) { f32 v = fsqrt(v3_len2(a)); return v; } v3 v3_norm(v3 a) { v3 v = V3_ZERO; f32 len = v3_len(a); if (len) v = (v3){a.x/len, a.y/len, a.z/len}; return v; } v4 v4_fill(f32 x) { v4 v = {x, x, x, x}; return v; } v4 v4_from_v3(v3 a) { v4 v = {a.x, a.y, a.z, 0.0f}; return v; } v4 v4_inv(v4 a) { v4 v = {-a.x, -a.y, -a.z, -a.w}; return v; } v4 v4_add(v4 a, v4 b) { v4 v = {a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w}; return v; } v4 v4_sub(v4 a, v4 b) { v4 v = {a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w}; return v; } v4 v4_scalef(v4 a, f32 s) { v4 v = {a.x*s, a.y*s, a.z*s, a.w*s}; return v; } v4 v4_scale(v4 a, v4 s) { v4 v = {a.x*s.x, a.y*s.y, a.z*s.z, a.w*s.w}; return v; } f32 v4_dot(v4 a, v4 b) { f32 v = a.x*b.x+a.y*b.y+a.z*b.z+a.w*b.w; return v; } f32 v4_len2(v4 a) { f32 v = v4_dot(a, a); return v; } f32 v4_len(v4 a) { f32 v = fsqrt(v4_len2(a)); return v; } v4 v4_norm(v4 a) { v4 v = V4_ZERO; f32 len = v4_len(a); if (len) v = (v4){a.x/len, a.y/len, a.z/len, a.w/len}; return v; } // matrices f32 mat4_det(mat4 m) { f32 m00 = m.c0.x, m10 = m.c0.y, m20 = m.c0.z, m30 = m.c0.w; f32 m01 = m.c1.x, m11 = m.c1.y, m21 = m.c1.z, m31 = m.c1.w; f32 m02 = m.c2.x, m12 = m.c2.y, m22 = m.c2.z, m32 = m.c2.w; f32 m03 = m.c3.x, m13 = m.c3.y, m23 = m.c3.z, m33 = m.c3.w; f32 m00minor = ((m11*m22*m33)+(m12*m23*m31)+(m21*m32*m13)- (m31*m22*m13)-(m21*m12*m33)-(m11*m32*m23)); f32 m01minor = ((m10*m22*m33)+(m12*m23*m30)+(m20*m32*m13)- (m13*m22*m30)-(m23*m32*m10)-(m12*m20*m33)); f32 m02minor = ((m10*m21*m33)+(m20*m31*m13)+(m11*m23*m31)- (m13*m21*m30)-(m23*m31*m10)-(m11*m20*m33)); f32 m03minor = ((m10*m21*m32)+(m20*m31*m12)+(m11*m22*m30)- (m12*m21*m30)-(m11*m20*m32)-(m22*m31*m10)); f32 result = m00*m00minor+m01*m01minor-m02*m02minor+m03*m03minor; return result; } mat4 mat4_transp(mat4 m) { swap(f32, m.c0.y, m.c1.x); swap(f32, m.c0.z, m.c2.x); swap(f32, m.c0.w, m.c3.x); swap(f32, m.c1.z, m.c2.y); swap(f32, m.c1.w, m.c3.y); swap(f32, m.c2.w, m.c3.z); return m; } mat4 mat4_mul(mat4 left, mat4 right) { f32 l00 = left.c0.x, l01 = left.c0.y, l02 = left.c0.z, l03 = left.c0.w; f32 l10 = left.c1.x, l11 = left.c1.y, l12 = left.c1.z, l13 = left.c1.w; f32 l20 = left.c2.x, l21 = left.c2.y, l22 = left.c2.z, l23 = left.c2.w; f32 l30 = left.c3.x, l31 = left.c3.y, l32 = left.c3.z, l33 = left.c3.w; f32 r00 = right.c0.x, r01 = right.c0.y, r02 = right.c0.z, r03 = right.c0.w; f32 r10 = right.c1.x, r11 = right.c1.y, r12 = right.c1.z, r13 = right.c1.w; f32 r20 = right.c2.x, r21 = right.c2.y, r22 = right.c2.z, r23 = right.c2.w; f32 r30 = right.c3.x, r31 = right.c3.y, r32 = right.c3.z, r33 = right.c3.w; mat4 result = { { l00*r00+l10*r01+l20*r02+l30*r03, l01*r00+l11*r01+l21*r02+l31*r03, l02*r00+l12*r01+l22*r02+l32*r03, l03*r00+l13*r01+l23*r02+l33*r03 }, { l00*r10+l10*r11+l20*r12+l30*r13, l01*r10+l11*r11+l21*r12+l31*r13, l02*r10+l12*r11+l22*r12+l32*r13, l03*r10+l13*r11+l23*r12+l33*r13 }, { l00*r20+l10*r21+l20*r22+l30*r23, l01*r20+l11*r21+l21*r22+l31*r23, l02*r20+l12*r21+l22*r22+l32*r23, l03*r20+l13*r21+l23*r22+l33*r23 }, { l00*r30+l10*r31+l20*r32+l30*r33, l01*r30+l11*r31+l21*r32+l31*r33, l02*r30+l12*r31+l22*r32+l32*r33, l03*r30+l13*r31+l23*r32+l33*r33 } }; return result; } mat4 mat4_make_transl(v3 v) { mat4 translate = { {1.0f, 0.0f, 0.0f, 0.0f}, {0.0f, 1.0f, 0.0f, 0.0f}, {0.0f, 0.0f, 1.0f, 0.0f}, {v.x, v.y, v.z, 1.0f} }; return translate; } mat4 mat4_make_scale(v3 v) { mat4 scale = { {v.x, 0.0f, 0.0f, 0.0f}, {0.0f, v.y, 0.0f, 0.0f}, {0.0f, 0.0f, v.z, 0.0f}, {0.0f, 0.0f, 0.0f, 1.0f} }; return scale; } mat4 mat4_make_rotate(v3 x, v3 y, v3 z) { mat4 rotate = { {x.x, x.y, x.z, 0.0f}, {y.x, y.y, y.z, 0.0f}, {z.x, z.y, z.z, 0.0f}, {0.0f, 0.0f, 0.0f, 1.0f} }; return rotate; } mat4 mat4_transl(mat4 m, v3 v) { mat4 translate = mat4_make_transl(v); mat4 result = mat4_mul(translate, m); return result; } mat4 mat4_scale(mat4 m, v3 v) { mat4 scale = mat4_make_scale(v); mat4 result = mat4_mul(scale, m); return result; } /* * NOTE(pryazha): Angles in degrees * | 1 0 0 | | cy 0 sy | | cz -sz 0 | | cy*cz -cy*sz sy | * | 0 cx -sx |*| 0 1 0 |*| sz cz 0 |=| sx*sy*cz+cx*sz -sx*sy*sz+cx*cz -sx*cy | * | 0 sx cx | | -sy 0 cy | | 0 0 1 | | -cx*sy*cz+sx*sz cx*sy*sz+sx*cz cx*cy | */ mat4 mat4_rotate(mat4 mat, v3 angles) { f32 angle = deg2rad(angles.x); f32 cx = fcos(angle); f32 sx = fsin(angle); angle = deg2rad(angles.y); f32 cy = fcos(angle); f32 sy = fsin(angle); angle = deg2rad(angles.z); f32 cz = fcos(angle); f32 sz = fsin(angle); v3 x = {cy*cz, sx*sy*cz+cx*sz, -cx*sy*cz+sx*sz}; v3 y = {-cy*sz, -sx*sy*sz+cx*cz, cx*sy*sz+sx*cz}; v3 z = {sy, -sx*cy, cx*cy}; mat4 rotate = mat4_make_rotate(x, y, z); mat4 result = mat4_mul(rotate, mat); return result; } v4 mat4_v4_mul(mat4 m, v4 v) { v4 result = { m.c0.x*v.x+m.c1.x*v.y+m.c2.x*v.z+m.c3.x*v.w, m.c0.y*v.x+m.c1.y*v.y+m.c2.y*v.z+m.c3.y*v.w, m.c0.z*v.x+m.c1.z*v.y+m.c2.z*v.z+m.c3.z*v.w, m.c0.w*v.x+m.c1.w*v.y+m.c2.w*v.z+m.c3.w*v.w }; return result; } i32 in_rect(v2 pos, rect_t rect) { i32 result = (pos.x > rect.start.x) && (pos.x < rect.end.x) && (pos.y > rect.start.y) && (pos.y < rect.end.y); return result; }